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Plasma-sprayed CaTiSiO5 ceramic coating
on Ti-6Al-4V with excellent bonding
strength, stability and cellular bioactivity

Chengtie Wu', Yogambha Ramaswamy’', Xuanyong Liu?,
Guocheng Wang? and Hala Zreigat"*

' Biomaterials and Tissue Engineering Research Unit, School of AMME,
University of Sydney, Sydney 2006, Australia
2Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingzi Road,
Shanghai 200050, People’s Republic of China

Novel Ca-Si-Ti-based sphene (CaTiSiOs5) ceramics possess excellent chemical stability
and cytocompatibility. The aim of this study was to prepare sphene coating on titanium alloy
(Ti-6Al1-4V) for orthopaedic applications using the plasma spray method. The phase
composition, surface and interface microstructure, coating thickness, surface roughness and
bonding strength of the plasma-sprayed sphene coating were analysed using X-ray
diffraction, scanning electron microscopy, atomic force microscopy and the standard
mechanical testing of the American Society for Testing and Materials, respectively. The
results indicated that sphene coating was obtained with a uniform and dense microstructure
at the interface of the Ti-6Al-4V surface and the thickness and surface roughness of the
coating were approximately 150 and 10 pm, respectively. Plasma-sprayed sphene coating on
Ti-6A1-4V possessed a significantly improved bonding strength and chemical stability
compared with plasma-sprayed hydroxyapatite (HAp) coating. Plasma-sprayed sphene
coating supported human osteoblast-like cell (HOB) attachment and significantly enhanced
HOB proliferation and differentiation compared with plasma-sprayed HAp coating and
uncoated Ti-6Al1-4V. Taken together, plasma-sprayed sphene coating on Ti-6Al-4V
possessed excellent bonding strength, chemical stability and cellular bioactivity, indicating
its potential application for orthopaedic implants.

Keywords: plasma spraying; surface modification; sphene; osteoblasts; titanium alloy
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1. INTRODUCTION

The prevalence of primary and revision of total hip and
knee arthroplasties increased steadily between 1990
and 2002 (Kurtz et al. 2005), and is expected to increase
over the next two decades (Kurtz et al. 2007). Recently,
the rate of joint replacement surgery has increased by
5-10 per cent per year, and over the past 20 years it has
increased more than 10 per cent per year. Moreover, as
many as 25 per cent of cementless hip replacements
survive less than 10 years in young patients (Peter et al.
2005). Revision operations are mainly due to aseptic
loosening of the implant following erosion of the
supporting bone. Consequently, there is a need to
develop new biocompatible surfaces that will anchor
the implant device to the bone tissue in a strong and
enduring manner.

A well-established primary biomaterial for ortho-
paedic implants is Ti-6A1-4V, a titanium alloy; however,
it does not functionally integrate into bone. Various
surface modification methods have been proposed for
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Ti-6Al-4V. The aim has been to enhance osseointegra-
tion and thereby interlock the implant with the
surrounding skeletal tissue, which will provide a stable
interface strong enough to support lifelong functional
loading. Previous studies have shown that surface
chemical modification of Ti-6Al-4V significantly
enhanced the initial response, phenotype and signalling
pathways of human osteoblasts (Zreiqat et al. 1999, 2002,
2005; Harle et al. 2006). Although these approaches have
had some success, their major drawbacks are the slow
rates of osseointegration and poor mechanical anchorage
in challenging clinical cases (Sporer & Paprosky 2005).

Ti-6Al-4V coated with bioactive ceramics such as
plasma-sprayed hydroxyapatite (HAp; Ha et al. 1998;
Harle et al. 2006; Balani et al. 2007) and calcium silicate
(CaSiOs; Liu et al 2001; Xue et al. 2005) showed
improved stability of Ti-6Al-4V, providing a strong
interface between the coating and the alloy and
enhanced bone growth and mineralization (Soballe
et al. 1991). However, these too have drawbacks
(Kweh et al. 2002; Liu et al. 2004a,b; Xue et al. 2004).
A crucial problem of Ti-6Al-4V-coated HAp is the poor
bonding strength with the metal substrate due to the

This journal is © 2008 The Royal Society
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mismatch of thermal expansion coefficient between HAp
and Ti-6A1-4V (Liu et al. 2004a,b). The high residual
stress resulting from the mismatch of the thermal
expansion coefficient between HAp (13.3X10 K1)
and Ti-6A1-4V (8.4X 10~ °t0 8.8 X 10~ ° K™ ) is thought
to be responsible for the higher tensile stress and
microcracks at the interface, which decreases the
bonding strength between the two materials (HAp and
Ti-6Al-4V) and limits their long-term survival (Kweh
et al. 2002; Liu et al. 2004a,b; Xue et al. 2004).

Owing to their good bioactivity, CaSiOs ceramics
have been used as coating on Ti-6A1-4V for biomedical
applications (De Aza et al. 2000; Liu et al. 2004 a,b; Xue
et al. 2005). The results showed enhanced bonding
strength of the plasma-sprayed CaSiOj coating,
compared with HAp (e.g. Kweh et al. 2002; Liu et al.
2004a,b; Xue et al. 2005). However, like HAp, CaSiO3
coatings have drawbacks, including their low chemical
stability leading to degradation and instability of the
coating after implantation (Liu et al. 2004a,b).
Although CaSiOj3 coatings produced good bioactivity
and enhanced short-term osseointegration properties of
the implant (Xue et al. 2005), their poor chemical
stability continues to be a major drawback and their
long-term stability is questionable (Liu & Ding 2002;
Wu et al. 2007a,b).

Sphene is a Ca-, Ti- and Si-containing mineral
(Wu et al. 2007a,b) and, recently, we found that coating
Ti-6Al-4V with sphene ceramic using the sol-gel method
resulted in an improved adhesion strength and chemical
stability of the coating compared with the sol-gel HAp
coating (Wu et al. 2007a,b, 2008a—c, 2008). High
temperature (more than 1000°C) is required to obtain
a completely sintered and dense sphene, which is
necessary to obtain good bonding strength of the
coating. However, it cannot be applied when the sol-
gel method is used to coat dense sphene on metals.
Moreover, a temperature of more than 900°C will
seriously oxidize and damage the Ti-6Al-4V surface.
Plasma spraying, another common method often used to
coat ceramics, avoids the above-mentioned drawbacks
of the sol-gel method problem. Plasma spraying directly
imposes extremely high temperatures on ceramic
particles to melt/sinter them, but it avoids the direct
exposure to high temperature of the Ti alloy substrate
and hence avoids damaging the Ti alloy. The high
temperature produced by the plasma spraying method is
able to sinter and produce sphene coating with denser
microstructure, compared with the sol-gel method. This
will significantly improve the bonding strength of the
coating on the Ti alloy (Liu et al. 2004 a,b). In addition,
the thermal expansion coefficient of sphene (6X10~
K™ is similar to that of Ti-6A1-4V (8.4X10™° to
8.8><10_6K_1). Therefore, in the present study, we
plasma sprayed sphene coating onto Ti-6Al-4V in an
attempt to improve the bonding strength and compared
their properties with sol-gel sphene coating and
currently used plasma-sprayed HAp coating.

It is known that chemical composition (Zreiqat et al.
2005; Harle et al. 2006; Wei et al. 2008) and surface
topography (Masaki et al. 2005; Liu et al. 2008) of
the biomaterial can alter the cellular responses sub-
stantially. Recently, we showed that excellent human

J. R. Soc. Interface (2009)

Table 1. Plasma spraying parameters.

argon plasma gas flow rate (slpm) 40
hydrogen plasma gas flow rate (slpm) 10
spray distance (mm) 100
argon powder carrier gas (slpm) 3.5
current (A) 600
voltage (V) 70

osteoblast-like cell (HOB) activity was obtained when
the cells were cultured on dense sphene ceramic discs
(Wu et al. 2007a,b). However, plasma-sprayed sphene
coating has significantly different surface topography,
roughness and microstructure compared with sphene
ceramic discs, which could influence HOB activity.
Therefore, in the present study, we aim to determine
the effect of plasma-sprayed sphene coating on
HOB attachment, proliferation and differentiation
and compare their response with those cultured on
HAp coating.

2. MATERIALS AND METHODS
2.1. Preparation of plasma-sprayed coating

Sphene powders were synthesized by the sol-gel
process using tetraethyl orthosilicate ((CoH50),Si,
TEOS; Sigma Aldrich, USA), titanium (IV) butoxide
and calcium nitrate tetrahydrate (Ca(NOj)s-4H,0;
Sigma Aldrich, USA), as detailed previously (Wu
et al. 2007 a,b). Briefly, TEOS and Ti(Bu), were mixed
with ethanol and 2 M HNOj; (molar ratio: TEOS/
Ti(Bu),/ethanol/HNO3=1:1:10:0.08) and hydro-
lysed for 30 min while stirring. Ca(NOs3)s-4H,0 was
added to the mixture (molar ratio: TEOS/Ti(Bu)4/
Ca(NO3)3-4H,O=1:1:1), and the reactants were
stirred for 5 hours at room temperature followed
by incubation at 60°C for 1 day before drying at 100°C
for 2 days. The obtained dry gel was ground and
transferred into a corundum crucible and calcined at
1100°C for 3 hours.

The calcined sphene powders were sieved to 80 mesh
to get particles of 45-200 pm size, and then the sphene
particles were sprayed onto Ti-6Al-4V discs (10X 10X
2 mm; Xi’an Continental Biomaterials Ltd Cor,
China), using an atmosphere plasma spray system
(APS-2000, Switzerland) and the parameters shown in
table 1. Plasma-sprayed HAp coatings on Ti-6Al-4V
substrates (HAp particle size: 45-160 pm) were pre-
pared with same preparation conditions and used with
uncoated Ti-6Al-4V as the controls. For cell culture,
the Ti-6Al-4V discs were ultrasonically washed with
water, acetone and ethanol for 10 min, respectively,
and then dried at 40°C overnight.

2.2. Characterization of coating

The phase composition of the Ti-6Al-4V substrates
before and after coating was analysed using X-ray
diffraction (XRD; Siemens D5000, Germany) with
a step size of 0.02° at a scanning rate of 1.2°min~ .
Surface morphology and roughness of the Ti-6Al-4V-

coated discs were analysed using scanning electron
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microscopy (SEM; Philips XL 30 CP, The Netherlands)
and atomic force microscopy (AFM; Tempe, AZ, USA)
in tapping mode. For evaluation of the coating thick-
ness, inner microstructure and bonding interface, the
coated discs were fixed in polymethylmethacrylate
(PMMA) and sections were cut using a diamond saw
(Exakt 300CL, Exakt Apparatebau, Germany) and
subsequently ground and polished with an Exakt 400
CS Micro Grinding System (Exakt Apparatebau,
Germany) before analysing by SEM. The open porosity
of the coatings was tested by Archimedes’ method.

2.3. Bonding strength and chemical stability
of coating

For measuring the bonding strength, sphene coating
with a thickness of approximately 380 um was sprayed
on Ti-6Al-4V rods with a diameter of 25 mm. The
bonding strength between the coating and Ti-6A1-4V
was measured in accordance with American Society
for Testing and Materials C-633 (Liu et al. 2002; Xue
et al. 2004).

For evaluation of the chemical stability of the
coating, the coated discs were soaked in a buffer
solution of tris(hydroxymethyl)aminomethane (Tris,
(CH,0H)3CNH,) and hydrochloric acid (HC1), with pH
7.4, for 1, 3 and 7 days, and the ratio of disc surface area
and solution volume of Tris-HCl was 0.1 cm?ml ™.
After soaking, the change of ion concentrations in
Tris—HCI solution was analysed using inductively
coupled plasma atomic emission spectroscopy (ICP-
AES; Optima 3000 DV, PerkinElmer, USA) and the
dissolution kinetic constant was calculated according to
the released ion concentrations. The morphology of
coating after soaking was analysed by SEM.

2.4. Isolation and culture of human
osteoblast-like cells

HOB were grown from small pieces of vertebral bone
harvested from healthy patients under 15 years of age
undergoing orthopaedic procedures (Wu et al. 2007a,b,
2008a—c, 2008). Bone was morselized into approxi-
mately 1 mm?® pieces, washed several times with
phosphate-buffered saline (PBS) and digested for
90 min at 37°C with 0.02 per cent (w/v) trypsin
(Sigma) in PBS. The digested cells were cultured in
a-minimal essential medium (a-MEM; Gibco Labora-
tories), supplemented with 10 per cent (v/v) foetal calf
serum (FCS; Gibco Laboratories), 2 mM r-glutamine
(Gibco Laboratories, Grand Island, NY, USA), 25 mM
Hepes buffer (Gibco Laboratories), 2mM sodium
pyruvate, 30 mg ml~ " penicillin, 100 mg ml~" strepto-
mycin (Gibco Laboratories) and 0.1 M r-ascorbic acid
phosphate magnesium salt (Wako Pure Chemicals,
Osaka, Japan). Then the digested cells were cultured
in 75 cm? flasks at 37°C in a CO, incubator until
confluence (approx. 70 per cent). The confluent cells
were trypsinized and used for the attachment, prolifer-
ation and alkaline phosphatase assays. Permission to use
discarded human tissue was granted by the Human
Ethics Committee of the University of Sydney.

J. R. Soc. Interface (2009)

2.5. Attachment and morphology of HOB

HOB was cultured on sphene and HAp-coated Ti-6A1-4V
discs placed in a 24-well culture plate at an initial density
of 1X10? cells cm ™ 2. Cells were then incubated for 1, 3
and 7 days in «-MEM culture medium supplemented
with 10 per cent FCS in humidified culture conditions. At
the completion of culture, the discs were removed from
the culture wells, rinsed with PBS (pH 7.4) and fixed
with 1.25 per cent glutaraldehyde, 4 per cent parafor-
maldehyde and 4 per cent sucrose in PBS for 1 hour. The
fixative was removed by washing with a buffer containing
4 per cent (w/v) sucrose in PBS and post-fixed in 1 per
cent osmium tetroxide in PBS followed by sequential
dehydration in graded ethanol (30, 50, 70, 90, 95, 100 per
cent). Specimens were dried in hexamethyldisilizane for
3 min before coating with gold for SEM analysis. The
morphological characteristics of attached cells on the
coating discs were determined using SEM.

After 7 days of culture, the medium was collected
from each well and ion concentrations were measured

using ICP-AES.

2.6. Proliferation of HOB

The mitochondrial activity of the HOB cultured
on coating and Ti-6Al-4V discs was determined by
colorimetric assay, which detected the conversion of
3-(4,5-dimethylthiazol-2-yl1)-2,5-diphenyltetrazolium
bromide (MTS; Promega, Madison, WI, USA) to
formazan, as detailed previously (Wu et al. 2008a—c,
2008). Cells were harvested with 0.1 per cent trypsin—
EDTA solution in PBS and resuspended in full culture
medium as detailed above. The cells were seeded at a
concentration of 5X 10 cells cm ™2 onto the coating and
the Ti-6A1-4V discs placed individually in a 24-well plate.
Then the cells were left to grow for 1, 3 and 7 days at 37°C
in a humidified atmosphere of 95 per cent air and 5 per
cent CO,. HAp-coated Ti-6Al-4V discs, uncoated Ti-6 Al-
4V discs and tissue culture plastic (TCP) templates were
used as control. At days 1, 3 and 7, the discs were
previously washed with 1 X PBS. Freshly prepared MTS
reaction mixture was diluted in PBS at a volume ratio of
1:5 (MTS : PBS) and added to the wells containing the
discs and incubated at 37°C for 4 hours. Three specimens
of each type were tested for each culture time point. One
hundred microlitres of the converted 3-(4,5-dimethyl-
thiazol-2-yl1)-2,5-diphenyltetrazolium bromide from each
well were transferred to a 96-well plate and the absorbance
was recorded using a microplate reader (PathTech) at
490 nm using the software ACCENT.

2.7. Alkaline phosphatase (ALP) activity of HOB

The functionality of HOB cultured on the test and
control discs was assessed by measuring the ALP
activity using p-nitrophenyl phosphate substrate
(ALP kit; Thermochem). The HOB were plated at a
density of 5X10* cells cm ™2 on the various discs and
cultured for 1, 3 and 7 days. At the predetermined time
point, the culture medium was decanted and the cell
layer washed gently three times with 1X PBS followed
by washing once with cold 50 mM Tris buffer, before
lysing in Tris buffer containing 0.2 per cent NP-40
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20 30 40

CuKa20 (deg.)

60 70

Figure 1. XRD analysis of (a) sphene and (b) hydroxyapatite
coating and (c¢) Ti-6Al-4V substrates (asterisk denotes
Ti-6Al-4V). S, sphene; T, CaTiOs; H, HAp; C, CaO.

solution. The cells were sonicated for 20 s, centrifuged
at 3000¢ for 5 min at 4°C and 2 ul of the lysate were
added to 100 pl of 16.3 mmol 1~ p-nitrophenyl phos-
phate (Thermochem) in a 96-well plate and incubated
for 30 min at 37°C. Reactions were stopped using 100 pl
of 0.1 N NaOH and the absorbance read at 405 nm
using a microplate reader (PathTech). The ALP
activity was calculated from a standard curve after
normalizing to the total protein content, which was
measured using Pierce BCA protein assay kit, and the
results expressed in millimolar p-nitrophenyl phosphate
produced per minute per milligram of protein. ALP
experiments were performed in triplicate and triplicate
discs were used in each experiment.

2.8. Statistical analysis

The data were expressed as means + standard deviation
(s.d.) for all experiments and analysed using one-way
ANOVA with post hoc test; p<0.05 was considered
statistically significant.

J. R. Soc. Interface (2009)

Figure 2. SEM morphology of (a) sphene and (b) hydro-
xyapatite coating and (c) Ti-6Al-4V discs.

3. RESULTS
3.1. Characterization of coating

XRD analysis shows that before coating, there are only
characteristic peaks of Ti in the pattern (figure 1¢), and
after coating, sphene characteristic peaks (standard card
no. JCPD 11-0142) and weak peaks of CaTiOj exist in
the pattern of plasma-sprayed sphene coating (figure 1a).
The plasma-sprayed HAp coating contains mainly HAp
crystal phase (standard card no. JCPD 24-0033) and
CaO phase in only minor amounts (figure 1b).

After plasma spray coating, the surface morphology of
the Ti-6A1-4V discs changed significantly (figure 2). A
compact sphene coating composed of melted sphene
particles formed on the Ti-6Al-4V discs (figure 2a), with
a morphology similar to that of the HAp coating
(figure 2b). AFM analysis demonstrated that sphene-
coated Ti-6Al-4V possesses a surface roughness similar


http://rsif.royalsocietypublishing.org/

Interface

OF
THE ROYAL

JOURNAL
SOCIETY

Interface

OoF
THE ROYAL

JOURNAL
SOCIETY

Interface

OF
THE ROYAL

JOURNAL
SOCIETY

Downloaded from rsif.royalsocietypublishing.org

CaTiSiOy5 ceramic coating on Ti-6Al-4V C. Wu et al. 163

Figure 3. AFM analysis of the surface roughness: (a) sphene coating (R

Eﬂ! ;.1. fti

2=10 pum), (b) HAp coating (R,=10 um) and

(¢) Ti-6Al-4V substrates (R,=0.5 um)

magn p——
200 200pm

\

magnI—I S5um
8000x

magnr—t 200 pm
300x
.

magn ————— 5um
8000x

N&
magn 1 10um
_ 4000>< =

Figure 4. SEM cross section of sphene and HAp coating. (a) Thickness of sphene coatings is approximately 150 um, (b) sphene
coating and Ti-6A1-4V substrates forming a close interface as shown by arrows and (c) sphene coating possessing dense structure.

(d) Cross section and (e) inner structure of HAp coatings.

to that of the HAp coating (10 pm), and both were
significantly higher than that for the uncoated Ti-6A1-4V
discs (0.50 pm; figure 3). The corresponding polished
cross sections of the sphene and HAp coating are shown
in figure 4. The thickness of the coating is approximately
150 pm (figure 4a). No microcracks were observed at the
interface, indicating a close bonding between the coating

J. R. Soc. Interface (2009)

and the Ti-6Al-4V substrates (figure 4b). The inner
microstructure of sphene coating is highly dense and only
a few micropores existed (figure 4¢). The thickness of the
HAp coating is approximately 140 pm (figure 4d) and a
few micropores existed in the inner structure (figure 4e).
The open porosity of the sphene and HAp coatings is
1.7740.34 per cent and 3.04 £ 0.66 per cent, respectively.
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Table 2. Bonding strength of plasma-sprayed sphene and HAp coating.

bonding strength (MPa)

references

coating
plasma-sprayed sphene 33.2+24
sol-gel sphene 17.4+0.9
plasma-sprayed HAp 5.9
8.0-16.6
13.0
24.5

Wu et al. (2008a-c, 2008)
Tsui et al. (1998)

Khor et al. (1997, 1998)
Zheng et al. (2000)

Kweh et al. (2002)

120 1

1 Y'=87.2+0.237X
100+ ¢
£ ]
g
~ 80 -
g .
S 1
B 60
g ]
g 10
8 ] Y'=7.604+0.072X

20 ‘/

o
0 20 40 60 80 100 120 140 160 180
soaking time (h)

Figure 5. Ca dissolution kinetics of sphene (open circles) and
HAp (filled circles) coating after 1, 3 and 7 days soaking in
Tris—HCI solution by ICP-AES analysis.

3.2. Bonding strength and chemical stability
of coating

The bonding strength of the plasma-sprayed sphene
coating on Ti-6Al-4V was 33.2+2.4 MPa (table 2). ICP-
AES analysis of Ca dissolution kinetics of the plasma-
sprayed sphene and HAp coatings in Tris—HCI solutions
is shown in figure 5. The concentration of the released
Ca ions in Tris—HCI solution for sphene coating is
significantly lower than that for HAp coating. Sphene
coating has a lower dissolution kinetics constant
(k=0.072 ppm h™ ') compared with that of HAp coating
(k=0.237 ppm h™'). SEM morphology analysis shows
that after soaking in Tris—HCI for 7 days, sphene coating
has no obvious change (figure 6a). However, the surface
of HAp coating becomes coarse with some evidence of
microparticles (figure 6b).

3.3. Attachment and morphology of HOB
on coating

HOB attachment and morphology on sphene and HAp
coating were examined using SEM. Sphene and
HAp coatings supported HOB attachment after 1 and
3 days of culture (figure 7a—d) and cells were confluent
and well spread on the two coatings after 7 days of
culture (figure 7e-h).

3.4. Proliferation and ALP activity of HOB

At day 3, HOB proliferation on sphene coating is a
little lower than that on HAp coating and comparable

J. R. Soc. Interface (2009)

£\

magn ———1 20um =
3000%

Figure 6. SEM morphology of (a) sphene and (b) hydro-
xyapatite coating after soaking in Tris—HCI for 7 days.

to Ti-6A1-4V and TCP (figure 8). However, by day 7,
the HOB cultured on sphene-coated Ti-6A1-4V exhib-
ited a significantly higher (p<0.05) proliferation
than that on HAp coating, Ti-6Al-4V and TCP
(figure 8). Figure 9 illustrates the changes in ALP
activity of the HOB cultures at 1, 3 and 7 days. On days
1 and 3, the ALP activity is expressed at low levels
for both sphene coating and controls. Thereafter, the
ALP activity increased over time, and by day 7 was
significantly higher (p<0.05) on sphene coating
compared with HAp coating, Ti-6Al-4V and tissue
culture plate (figure 9).

3.5. Ion concentration of culture medium

After 7 days of culture, the concentrations of Ca and Si
ions in sphene coating-cultured medium are 2.85 and
0.29 mM, respectively, and no Ti ions are detected.
There are no Si ions in HAp coating-cultured medium
and TCP (table 3).
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Figure 7. SEM of the attachment and morphology of human bone-derived cells cultured on sphene coating for (a) 1, (¢) 3 and
(e,9) 7 days, and on HAp coating for (b) 1, (d) 3 and (f;h) 7 days. (g) and (h) are higher magnification images. Arrows

indicate cells.

4. DISCUSSION

The major finding of this study is that we developed
for the first time the plasma-sprayed sphene-coated
Ti-6Al-4V with significantly improved bonding strength,
chemical stability and cellular bioactivity compared
with the currently used HAp coating. HAp- and
CaSiOz-coated orthopaedic and dental implants have
been widely studied for clinical trials and applications
(Bauer et al. 1991; Kweh et al. 2002; Xue et al. 2005;

J. R. Soc. Interface (2009)

Fini et al. 2008). However, the main drawbacks of these
coatings are their poor bonding strength and insufficient
chemical stability, which result in the delamination of
coating from T1i alloys and limits their long-term survival
(Khor et al. 1997; Kweh et al. 2002; Liu et al. 2004a,b; Xue
et al. 2004). An important characteristic feature of a
coated implant material is its sufficient bonding strength
and chemical stability to maintain long-term functional
loading. We showed that Ti-6Al-4V plasma-coated with


http://rsif.royalsocietypublishing.org/

Interface

OF

THE ROYAL

JOURNAL
SOCIETY

Interface

OF

THE ROYAL

JOURNAL
SOCIETY

Interface

OF

THE ROYAL

JOURNAL
SOCIETY

Downloaded from rsif.royalsocietypublishing.org

166 CaTiSiO5 ceramic coating on Ti-6Al-4V C. Wu et al.

0.9
{ I sphene
081 = Hap
c 0.7 4 [ Ti-6Al-4V
1 TCP
S 0.6 —
o’ o
< J
s 051
& 041 p<0.05
S 0.3 p<0.05
B — L
Ko 0.2-_
0.1- I
o IEN—
1 3

culture time (days)

Figure 8. HOB proliferation on sphene, HAp coating and
Ti-6Al-4V substrates at 1, 3 and 7 days of culture. TCP, tissue
culture plate.
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Figure 9. ALP activity of HOB on sphene, HAp coating and
Ti-6Al1-4V substrates at 1, 3 and 7 days of culture. TCP, tissue
culture plate.

sphene possessed a significantly higher bonding strength
(33.2 MPa), compared with HAp-coated Ti-6Al-4V
(5.9-24.5 MPa; Khor et al. 1997, 1998; Tsui et al. 1998;
Zheng et al. 2000; Kweh et al. 2002) and the sol-gel
sphene coating (17.4 MPa; Wu et al. 2008a—c, 2008).
There are two important reasons for the excellent
bonding strength of sphene plasma coating. One is the
dense microstructure of sphene plasma coating. Previous
studies have shown that the porosity of a coating has a
significant effect on the bonding strength (Liu et al.
2004a,b; Oh et al. 2005). In this study, the porosity of
sphene plasma coating (1.77 per cent) is lower than that
of HAp plasma coating (3.04 per cent), which may
contribute to the improved bonding strength of sphene
plasma coating compared with HAp plasma coating. The
sintering properties and powder shape may be the main
factors affecting the coating density. Different ceramics
have different sintering properties, such as sintering
kinetics and shrinkage, at high temperature. Sphene may
have better sintering properties that result in higher
density. Although sphene and HAp powders have similar
size distribution, however, the shape of powders may be a
little different. Powder shape will affect powder flow-
ability and further affect the coating density (Bartuli
et al. 2002). In addition, the plasma spraying technique

J. R. Soc. Interface (2009)

Table 3. Ton concentrations of culture medium after 7 days
of culturing HOB on coating and tissue culture plate (TCP).

coating ion concentration (mM)
sphene Ca 2.85
Si 0.29
Ti 0
HAp Ca 4.95
Si 0
TCP Ca 2.40
Si 0

produced sphene coating with denser microstructure
than the sol-gel technique. We recently demonstrated
that sol-gel sphene coating possesses excellent chemical
stability and enhanced bonding strength compared with
sol-gel HAp-coated Ti-6Al-4V (Wu et al. 2008a—c,
2008). However, the sol-gel sphene coatings can only be
sintered at relatively low temperature (less than 900°C)
as higher temperature (more than 900°C) sintering will
oxidize and damage the surface of the metal. The
problem with low temperature (less than 900°C) sinter-
ing is that we cannot produce a completely dense
structure of the sol-gel sphene coating, thus affecting
its bonding strength. Plasma spraying is by far the most
frequently used commercial technique for coating
biomedical devices. The advantages of plasma spraying,
compared with the sol-gel technique, include high
deposition rates (80 g min_l) and rough surface, which
is favourable for bone substitutes (Liu et al. 2004a,b).
The plasma spraying technique uses higher temperature
compared with sol-gel coatings, producing dense micro-
structure and thereby denser bonding interface (Liu
et al. 2004a,b).

Thermal expansion coefficient of ceramics (Saiz
et al. 2002; Liu et al. 2004a,b) is another parameter
that influences the bonding strength between the
coatings and the underlying substrata. Sphene
ceramics (6X 107 K™') possess a thermal expansion
coefficient similar to that of Ti-6Al-4V (8.4X10~° to
8.8X 10~ ° K1), therefore favouring a higher bonding
strength and reducing the residual stress, which may result
from the mismatch of the thermal expansion coefficient.

The chemical stability of the ceramics is an
important factor influencing the long-term stability of
the coating (Liu et al. 2004a,b; Wu et al. 2007a,b). In
this study, we found that plasma-sprayed sphene
coating has a decreased dissolution rate compared
with HAp coating, indicating that sphene coating
possesses an improved chemical stability, compared
with HAp coating. Previous studies showed that the
crystal structure of the ceramics affect their stability
(Ducheyne et al. 1993; Radin & Ducheyne 1994). It is
known that sphene and HAp ceramics have different
crystal structures (sphene, monoclinic; HAp, hexago-
nal), which may result in the difference of the chemical
stability of the two ceramic coatings.

The interaction of the cells with their substrate is a
key factor for cellular activity including attachment,
proliferation and differentiation (Anselme 2000), ulti-
mately determining the cellular phenotype on the
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